Plus Two Maths Chapter Wise Questions and Answers Chapter 7 Integrals

Students can Download Chapter 7 Integrals Questions and Answers, Plus Two Maths Chapter Wise Questions and Answers helps you to revise the complete Kerala State Syllabus and score more marks in your examinations.

Kerala Plus Two Maths Chapter Wise Questions and Answers Chapter 7 Integrals

Plus Two Maths Integrals Three Mark Questions and Answers

Question 1.
Integrate the following. (3 Score each)

1. ∫sin x sin 2x sin 3 xdx
2. ∫sec2x cos22x dx

1. We have sinxsin2xsin3x
= 1/2 (2sinxsin3x) sin2x
= 1/2 (cos2x – cos4x) sin2x
= 1/4 (2sin2xcos2x – 2cos4xsi n2x)
= 1/4 [sin4x – (sin6x – sin2x)]
= 1/4(sin4x + sin2x – sin6x)
∫sin x sin 2x sin 3 xdx
= $$\frac{1}{4}$$ ∫(sin 4x + sin 2x – sin 6x)dx
= –$$\frac{1}{16}$$ cos4x – $$\frac{1}{8}$$ cos2x + $$\frac{1}{24}$$ cos6x + c.

2. sec2x cos22x = $$\frac{\left(2 \cos ^{2} x-1\right)^{2}}{\cos ^{2} x}$$
= $$\left(\frac{2 \cos ^{2} x}{\cos x}-\frac{1}{\cos x}\right)^{2}$$ = (2cosx – secx)2
= 4cos2x + sec2x – 4
= 2(1 + cos2x) + sec2x – 4
= 2cos2x + sec2x – 2
∫sec2 x cos2 2x dx = ∫(2 cos 2x + sec2 x – 2)dx
= sin 2x + tan x – 2x + c.

Question 2.
Find $$\int \frac{2+\sin 2 x}{1+\cos 2 x} e^{x} d x$$?

= ∫ex [sec2 x + tan x]dx
= ∫ex[tanx + sec2x]dx = ex tanx + c.

Question 3.
Evaluate $$\int \frac{\sec ^{2} x d x}{\sqrt{\tan ^{2} x+4}}$$?
Put tanx = u, sec2xdx = dy

Question 4.
Find the following integrals.

(i) I = $$\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1+\cos ^{2} x} d x$$
Put cosx = t ⇒ -sin xdx = dt
When x = 0 ⇒ t = cos0 = 1,

(ii) I = $$\int_{0}^{1} x e^{x^{2}} d x$$
Put x2 = t ⇒ 2xdx = dt
When x = 0 ⇒ t = 0,
x = 1 ⇒ t = 1
I = $$\frac{1}{2} \int_{0}^{1} e^{t} d t$$ =

= [e1 – e0] = e – 1.

Put sin x = t ⇒ cos xdx = dt
When x = 0 ⇒ t = sin0 = 0,

(iv) I = $$\int_{0}^{2} x \sqrt{x+2} d x$$
Put x + 2 = t2 ⇒ dx = 2tdt
When x = 0 ⇒ t = $$\sqrt{2}$$, x = 2 ⇒ t = 2

(v) I = $$\int_{0}^{\frac{\pi}{2}} \sqrt{\sin x} \cos x d x$$
Put sin x = t ⇒ cos xdx = dt
When x = 0 ⇒ t = sin0 = 0,

Put tan x = t ⇒ sec2 xdx = dt
When x = 0 ⇒ t = tan 0 = 0,

Question 5.
(i) If f (x) is an odd function, then $$\int_{-a}^{a} f(x)$$ = ?
(a) 0
(b) 1
(c) 2$$\int_{0}^{a} f(x)$$ dx
(d) 2a
Evaluate
(ii) $$\int_{-\pi / 2}^{\pi / 2} \sin ^{99} x \cdot \cos ^{100} x d x$$
(iii) $$\int_{-1}^{1} e^{|x|} d x$$
(i) (a) 0.

(ii) Here, f(x) = sin99x.cos100x .then,
f(-x) = sin99(- x).cos100(- x) = – sin99 x. cos100 x = -f(x)
∴ odd function ⇒ $$\int_{-\pi / 2}^{\pi / 2} \sin ^{99} x \cdot \cos ^{100} x d x=0$$.

(iii) Here, f(x) = e|x|, f(-x) = e|-x| = e|x| = f(x)
∴ even function.

we have |x| = x, 0 ≤ x ≤ 1

Question 6.

1. Show that cos2 x is an even function. (1)
2. Evaluate $$\int_{-\pi / 4}^{\pi / 4} \cos ^{2} x d x$$ (2)

1. Let f(x) = cos2x ⇒ f(-x) = cos2 (-x) = cos2 x = f(x) even.

2.

Question 7.
Find the following integrals.

Question 8.
Find the following integrals.

Question 9.
Find the following integrals.

1. $$\int \frac{1}{3+\cos x} d x$$
2. $$\int \frac{2 x}{x^{2}+3 x+2} d x$$

1. $$\int \frac{1}{3+\cos x} d x$$
Put t = tanx/2 ⇒ dt = 1/2 sec2 x/2 dx

2. $$\int \frac{2 x}{x^{2}+3 x+2} d x$$ = $$\int \frac{2 x}{(x+2)(x+1)} d x$$

2x = A(x + 1) + B (x + 2)
when x = -1, -2 = B ; B = -2
when x = -2, -4 = -A ; A = 4

= 4log(x + 2) – 2log (x + 1) + C.

Plus Two Maths Integrals Four Mark Questions and Answers

Question 1.
Find the following integrals.

x2 + x +1 = A(x2 + 1) + (Bx + C)(x + 2)
Put x = -2 ⇒ 4 – 2 + 1 = 5A ⇒ A = $$\frac{3}{5}$$
Equating the coefficients of x2
⇒ 1 = A + B ⇒ B = 1 – $$\frac{3}{5}$$ = $$\frac{2}{5}$$
Equating the constants
⇒ 1 = A + 2C ⇒ 2C = 1 – $$\frac{3}{5}$$ = $$\frac{2}{5}$$ ⇒ C = $$\frac{1}{5}$$

⇒ 1 = A(x – 1) + B(x + 3)
Put x = 1 ⇒ 1 = 2A ⇒ A = $$\frac{1}{2}$$
Put x = -3 ⇒ 1 = -4B ⇒ B = – $$\frac{1}{4}$$

Equating the constants; ⇒ 1 = A
Equating the coefficients if t;
⇒ 0 = A + B ⇒ B = -1

Question 2.
Find the following integrals.

1. ∫ e2x sin3xdx
2. ∫ x sin-1xdx

1. I = ∫e2x sin3xdx = ∫ sin 3x × e2xdx

2. ∫ x sin-1xdx = ∫ sin-1x × xdx

Question 3.
(i) Which of the following is the value of $$\int \frac{d x}{\sqrt{a^{2}-x^{2}}}$$? (1)

(ii) Evaluate $$\int \frac{2 x}{x^{2}+3 x+2} d x$$ (3)
(i) [sin-1$$\frac{x}{a}$$ + c]

(ii)

⇒ 2x = A(x + 1) + B(x + 2) ⇒
Put x = -2 and x = -1, we get A = 4, B = -2

Question 4.

1. Choose the correct answer from the bracket.
∫ex dx = — (e2x + c, e-x + c, e2x + c) (1)
2. Evaluate: ∫ ex sinxdx

1. ex + c

2. I = ∫ex sinxdx = sinx.ex – ∫cos x.exdx
= sin x.ex – (cos x.ex – ∫(- sin x).ex dx)
= sinx.ex – cosxex – ∫sinx.exdx
= sin x.ex – cos xex – I
2I = sin x.ex – cos xex
I = $$\frac{1}{2}$$ex(sinx – cosx) + c.

Question 5.
(i) f(x)∫g(x) dx – ∫(f'(x)∫g(x) dx)dx (1)
(a) ∫f'(x)g{x)dx
(b) ∫f(x)g'(x)dx
(c) ∫$$\frac{f(x)}{g(x)}$$dx
(d) ∫f(x)g(x)dx
(ii) Integrate sin-1$$\sqrt{\frac{x}{a+x}}$$dx w.r.to x. (3)
(i) (d) ∫f(x)g(x)dx

(ii) ∫sin-1$$\sqrt{\frac{x}{a+x}}$$dx,
Put x = a tan2θ, θ = tan-1$$\sqrt{\frac{x}{a}}$$
⇒ dx = 2a tanθ sec2θ dθ
I = ∫sin-1$$\left(\frac{\tan \theta}{\sec \theta}\right)$$ 2a tanθ sec2θ dθ
= ∫sin-1(sinθ)2a tanθ sec2θ dθ
= 2a∫θ tanθ sec2θ dθ
Put tanθ = t, θ = tan-1 t ⇒ sec2θ dθ = dt
= 2a ∫ tan-1 t (t) dθ

= a[tan2θ.θ – tanθ + θ] + c
= a[θ(1 + tan2θ) – tanθ] + c

Question 6.
Match the following. (4)

Question 7.
Evaluate $$\int \frac{x}{\sqrt{x+a}+\sqrt{x+b}} d x$$?

Question 8.
Match the following.

1.

2. ∫sec x(sec x + tan x)dx = ∫(sec2 x + sec x. tan x)dx
= tanx + secx + c.

3. ∫e3xdx = $$\frac{e^{3 x}}{3}$$ + c.

4. ∫(sin x + cos x)dx = sin x – cosx + c.

Question 9.
Consider the integral I = $$\int \frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}} d x$$?

1. What substitution can be given for simplifying the above integral? (1)
2. Express I in terms of the above substitution. (1)
3. Evaluate I. (2)

1. Substitute sin-1 x = t.

2. We have, sin-1 x = t ⇒ x = sint
Differentiating w.r.t. x; we get,
$$\frac{1}{\sqrt{1-x^{2}}}$$dx = dt
∴ I = ∫t sin t dt.

3. I = ∫t sin t dt = t.(-cost) -∫(-cost)dt = -t cost + sint + c
= -sin-1 x. cos (sin-1 x) + sin(sin-1 x) + c
x – sin-1 x.cos(sin-1 x) + c.

Question 10.
Evaluate $$\int_{0}^{\pi / 4} \log (\tan x) d x$$.

Question 11.
Find the following integrals.

1. $$\int \frac{\sec ^{2} x}{\cos e c^{2} x} d x$$ (2)
2. $$\int \frac{1}{x^{2}-6 x+13} d x$$ (2)

1. $$\int \frac{\sec ^{2} x}{\cos e c^{2} x} d x$$ = $$\int \frac{\sin ^{2} x}{\cos ^{2} x} d x$$ = ∫tan2 xdx
= ∫(sec2x – 1)dx = tanx – x + c.

2. $$\int \frac{1}{x^{2}-6 x+13} d x$$

Question 12.

Question 13.
(i) ∫sin2x dx = ? (1)
(a) 2 cos x + c
(b) -2 sin x + c
(c) $$\frac{\cos 2 x}{2}$$ + c
(d) $$-\frac{\cos 2 x}{2}$$ + c
(ii) Evaluate ∫ex sin 2x dx (3)
(i) (d) $$-\frac{\cos 2 x}{2}$$ + c.

(ii) Consider I = ∫ex sin 2x dx
= ∫sin 2x. exdx = sinx.ex – 2∫cos 2x. exdx
= sin 2x.ex – 2 (cos 2x.ex + 2∫sin 2x. exdx)
= sin 2x. ex – 2 cos 2x ex – 4 ∫sin 2x. exdx
= sin 2x. ex – 2 cos 2x ex – 4I
5 I = sin 2x. ex – 2 cos 2x ex
I = $$\frac{e^{x}}{5}$$ (sin 2x – 2 cos 2x).

Question 14.

1. Resolve $$\frac{x^{2}+1}{x^{2}-5 x+6}$$ into partial fractions. (2)
2. Hence evaluate ∫$$\frac{x^{2}+1}{x^{2}-5 x+6}$$. (2)

1.

2.

5x – 5 = A(x – 2) + B(x – 3)
x = 2, 5 = -B, B = -5
x = 3, 10 = A, A = 10
(1) ⇒ I = ∫ 1dx + ∫$$\frac{10}{x-3}$$ dx – ∫$$\frac{5}{x-2}$$ dx
= x + 10log(x – 3) – 5log(x – 2) + c.

Question 15.
Evaluate $$\int_{0}^{4}$$ xdx as a limit of sum.
By definition,
$$\int_{a}^{b}$$ f(x) dx =
(b – a)$$\lim _{n \rightarrow \infty} \frac{1}{n}$${f(a) + f(a + h) +…….+f(a + {n – 1)h)}
Here, a = 0, b = 4, f(x) = x, h = $$\frac{4-0}{n}=\frac{4}{n}$$ ⇒ nh = 4

Question 16.

1. Define the real valued function f(x) = |x2 + 2x – 3| (2)
2. Evaluate $$\int_{0}^{2}$$|x2 + 2x – 3|dx. (2)

1. f(x) = |x2 + 2x – 3| = |(x – 1) (x + 3)|
We have;

2. I = $$\int_{0}^{2}$$|x2 + 2x – 3|dx

Question 17.
Consider the function f(x) = |x|+|x + 1|

1. Define the function f (x) in the interval [-2, 1]. (2)
2. Find the integral $$\int_{-2}^{1}$$ f(x) dx (2)

1. Given, f(x) = |x|+|x + 1|.
We have,

Combining these two functions, we get the function f(x).

2.

Question 18.
Evaluate $$\int_{\sqrt{6}}^{\sqrt{3}} \frac{d x}{1+\sqrt{\tan x}} d x$$. (4)

Plus Two Maths Integrals Six Mark Questions and Answers

Question 1.
(i) Fill in the blanks. (3)
(a) ∫ tan xdx = —
(b) ∫ cos xdx = —
(c) ∫$$\frac{1}{x}$$dx = —
(ii) Evaluate ∫sin3 xcos2 xdx (3)
(i) (a) log|secx| + c
(b) sinx + c
(c) log|x| + c.

(ii) ∫sin3 xcos2 xdx = ∫sin2 xcos2 x sin xdx
= ∫(1 – cos2 x)cos2 x sin xdx
Put cos x = t ⇒ – sin xdx = dt
∴ ∫(1 – cos2 x)cos2 xsin xdx = -∫(1 – t2 )t2dt
= ∫(t4 – t2)dt = $$\frac{t^{5}}{5}-\frac{t^{3}}{3}$$ + c
= $$\frac{\cos ^{5} x}{5}-\frac{\cos ^{3} x}{3}$$ + c.

Question 2.
Find the following integrals.

(i) I = ∫(3x – 2)$$\sqrt{x^{2}+x+1} d x$$
Let 3x – 2 = A(2x + 1) + B
⇒ 3 = 2 A ⇒ A = $$\frac{3}{2}$$
⇒ -2 = A + B ⇒ -2 = $$\frac{3}{2}$$ + B
⇒ B = -2 – $$\frac{3}{2}$$ = – $$\frac{7}{2}$$

Using (2) and (3) in (1) we have;

(ii) I = $$\int \frac{2 x-3}{x^{2}+3 x-18} d x$$
Let 2x – 3 = A(2x + 3) + B
⇒ 2 = 2A ⇒ A = 1
⇒ -3 = 3A + B ⇒ -3 = 3 + B ⇒ B = -6

(iii) I = $$\int \frac{5 x+2}{1+2 x+3 x^{2}} d x$$
Let 5x + 2 = A{6x + 2) + B
⇒ 5 = 6 A ⇒ A = $$\frac{5}{6}$$
⇒ 2 = 2A + B ⇒ 2 = $$\frac{5}{3}$$ + B ⇒ 2 – $$\frac{5}{3}$$ = $$\frac{1}{3}$$

(iv) I = $$\int \frac{5 x+3}{\sqrt{x^{2}+4 x+10}} d x$$
Let 5x + 3 = A(2x + 4) + B
⇒ 5 = 2A ⇒ A = $$\frac{5}{2}$$
⇒ 3 = 4A + B ⇒ 3 = 10 + B ⇒ B = -7

Using (2) and (3) in (1) we have;

Question 3.
Consider the expression $$\frac{1}{x^{3}-1}$$

1. Split it into partial fraction. (2)
2. Evaluate ∫ $$\frac{1}{x^{3}-1}$$ dx (4)

1.

1 = A (x2 + x + 1) + (Bx + c)(x + 1),
Put x = -1 ⇒ 1 = A(1 + 1 + 1) ⇒ A= $$\frac{1}{3}$$
Equating like terms.
0 = A + B ⇒ B = – $$\frac{1}{3}$$, 1 = A + C ⇒ C = $$\frac{2}{3}$$

2.

Put, x – 2 = D (2x – 1) + E ,
1 = 2 D ⇒ D = $$\frac{1}{2}$$,
-2 = -D + E ⇒ E = –$$\frac{3}{2}$$

Question 4.
(i) Match the following (4)

(ii) Consider the function f(x) = $$\frac{x^{4}}{x+1}$$ Evaluate ∫f(x)dx (2)
(i)

(ii) Here the numerator is of degree 4 and denominator of degree 1. So to make it a proper fraction we have to divide Nr by Dr.

Question 5.

1. Evaluate the as $$\int_{0}^{2}$$x2dx the limit of a sum. (3)
2. Hence evaluate $$\int_{-2}^{2}$$x2dx (1)
3. If $$\int_{0}^{2}$$ f(x)dx = 5 and $$\int_{-2}^{2}$$ f(x)dx = 0, then $$\int_{-2}^{0}$$ f(x)dx = …….. (2)

1. Here the function is f(x) = x2, a = 0, b = 2 and h = $$\frac{b-a}{n}=\frac{2}{n}$$
$$\int_{0}^{2}$$x2dx =

2. $$\int_{-2}^{2}$$ x2dx = 2 $$\int_{0}^{2}$$x2dx = $$\frac{16}{3}$$

3.

Question 6.
Find ∫$$\sqrt{\tan x}$$xdx.
Given;
I = ∫$$\sqrt{\tan x}$$xdx,
Put tanx = t2 ⇒ sec2xdx = 2tdt ⇒ dx = $$\frac{2 t d t}{1+t^{4}}$$

Question 7.
(i) Match the following. (2)

(ii) Integrate $$\frac{\sec ^{2} x}{5 \tan ^{2} x-12 \tan x+14}$$ w.r.to x. (4)
(i)

Question 8.

1. Evaluate $$\int_{0}^{1} \sqrt{x} d x$$ (1)
2. If $$\int_{0}^{a} \sqrt{x} d x=2 a \int_{0}^{\pi / 2} \sin ^{3} x d x$$, find the value of a. (3)
3. Hence find $$\int_{a}^{a+1}$$x dx. (2)

1.

2. Given;

3. When a = 0

When, a = 4

Question 9.
(i) Let f (x) be a function, then $$\int_{0}^{a}$$ f(x) dx = ? (1)
(a) 2 $$\int_{0}^{a}$$ f(x – a) dx
(b) $$\int_{0}^{a}$$ f(a – x) dx
(c) f(a)
(d) 2$$\int_{0}^{a}$$ f(a – x) dx
Evaluate

(i) (b) $$\int_{0}^{a}$$ f(a – x) dx

(ii)

(1) + (2)

⇒ I = 1.

(iii)

Question 10.
Find the following integrals.

1. ∫$$\frac{2 e^{x}}{e^{3 x}-6 e^{2 x}+11 e^{x}-6} d x$$
2. ∫$$\frac{(3 \sin x-2) \cos x}{5-\cos ^{2} x-4 \sin x} d x$$

1.

⇒ 1 = A(t – 2)(t – 3) + B(t – 1)(t – 3) + C(t – 1)(t – 2)
Put t = 1 ⇒ 1 = A(-1)(-2) ⇒ A = $$\frac{1}{2}$$
Put t = 2 ⇒ 1 = B(1)(-1) ⇒ B = -1
Put t = 3 ⇒ 1 = B(2)(1) ⇒ B = $$\frac{1}{2}$$

2. I = ∫$$\frac{(3 \sin x-2) \cos x}{5-\cos ^{2} x-4 \sin x} d x$$dx
Put sin x = t ⇒ cosxdx = dt

⇒ 3t – 2 = A(t – 2) + B
Equating the coefficients if t; ⇒ 3 = A
Equating the constants
⇒ -2 = -2A + B ⇒ -2 = -6 + B ⇒ B = 4

Question 11.

1. Find ∫$$\frac{1}{x^{2}+a^{2}}$$dx (1)
2. Show that 3x + 1 = $$\frac{3}{4}$$(4x – 2) + $$\frac{5}{2}$$ (2)
3. Evaluate $$\int \frac{3 x+1}{2 x^{2}-2 x+3} d x$$ (3)

1. ∫$$\frac{1}{x^{2}+a^{2}}$$dx = 1/a tan-1 x/a + c.
2. 3x + 1 = A $$\frac{d}{d x}$$(2x2 – 2x + 3) + B